Low Order Crouzeix-raviart Type Nonconforming Finite Element Methods for Approximating Maxwell’s Equations

نویسنده

  • DONGYANG SHI
چکیده

The aim of this paper is to study the convergence analysis of three low order Crouzeix-Raviart type nonconforming rectangular finite elements to Maxwell’s equations, on a mixed finite element scheme and a finite element scheme, respectively. The error estimates are obtained for one of above elements with regular meshes and the other two under anisotropic meshes, which are as same as those in the previous literature for conforming elements under regular meshes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Survey on A Posteriori Error Estimators for the Crouzeix-Raviart Nonconforming Finite Element Method for the Stokes Problem

This survey compares different strategies for guaranteed error control for the lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equations. The upper error bound involves the minimal distance of the computed piecewise gradient DNC uCR to the gradients of Sobolev functions with exact boundary conditions. Several improved suggestions for the cheap computation of suc...

متن کامل

A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes

A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary ...

متن کامل

A nonconforming finite element method for the Stokes equations using the Crouzeix-Raviart element for the velocity and the standard linear element for the pressure

We present a finite element method for Stokes equations using the Crouzeix-Raviart element for the velocity and the continuous linear element for the pressure. We show that the inf-sup condition is satisfied for this pair. Two numerical experiments are presented to support the theoretical results.

متن کامل

P1-Nonconforming Finite Elements on Triangulations into Triangles and Quadrilaterals

The P1-nonconforming finite element is introduced for arbitrary triangulations into quadrilaterals and triangles of multiple connected Lipschitz domains. An explicit a priori analysis for the combination of the Park–Sheen and the Crouzeix–Raviart nonconforming finite element methods is given for second-order elliptic PDEs with inhomogeneous Dirichlet boundary conditions.

متن کامل

A Posteriori Error Estimates of the Stabilized Crouzeix-raviart Finite Element Method for the Lamé-navier Equations

We obtain a posteriori error estimates for a variant of (non-locking) stabilized nonconforming methods based on the Crouzeix-Raviart element introduced by P. Hansbo and M. G. Larson in [M2AN 37 (2003) 63-72]. We derive upper and lower a posteriori error bounds which are robust with respect to the nearly incompressible materials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007